Строение J-агрегатов как центров свечения в полимерных электролюминесцентных структурах тема диссертации и автореферата по ВАК РФ 02.00.04, кандидат химических наук Позин, Сергей Игоревич

  • Позин, Сергей Игоревич
  • кандидат химических науккандидат химических наук
  • 2012, Москва
  • Специальность ВАК РФ02.00.04
  • Количество страниц 214
Позин, Сергей Игоревич. Строение J-агрегатов как центров свечения в полимерных электролюминесцентных структурах: дис. кандидат химических наук: 02.00.04 - Физическая химия. Москва. 2012. 214 с.

Оглавление диссертации кандидат химических наук Позин, Сергей Игоревич

ИСПОЛЬЗУЕМЫЕ СОКРАЩЕНИЯ

ВВЕДЕНИЕ

ГЛАВА 1. ЛИТЕРАТУРНЫЙ ОБЗОР

1.1. История создания, перспективы ОСИД

1.2. Люминесценция в органических полупроводниках

1.3. Полифлуорены (ПФ) как электролюминофоры

1.4. J-агрегаты цианиновых красителей, их возможное применение в ОСИД

ГЛАВА 2. ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ

2.1. Используемые вещества, их синтез и очистка

2.2. Приготовление подложек для ОСИД

2.3. Нанесение полимерных слоев образцов ЭЛ

2.4. Приготовление композитов J-агрегат/полимер

2.5. Сушка полимерных пленок от растворителей

2.6. Контроль толщины полимерных пленок

2.7. Приготовление многослойных электролюминесцентных структур

2.8. Измерение спектральных, электрофизических и электрохимических характеристик

2.9. Подготовка образцов для АСМ-измерений

2.10. Методика проведения АСМ-измерений

ГЛАВА 3. ПОСТРОЕНИЕ МОДЕЛЕЙ J-АГРЕГАТОВ ЦК НА

ОСНОВЕ ПОЛУЧЕННЫХ ДАННЫХ АС-МИКРОСКОПИИ

3.1. Особенности измерения высот агрегатов ЦК методом АСМ

3.2. J-агрегаты ЦК-1 и ЦК-2, сформированные в объеме раствора

3.3. J-агрегаты ЦК-1, сформированные на подложке

3.4. J-агрегаты ЦК

3.5. J-агрегаты ЦК

ГЛАВА 4. ЭЛЕКТРОЛЮМИНЕСЦЕНТНЫЕ КОМПОЗИТЫ

J-АГРЕГАТЫ/ПОЛИМЕР

4.1. J-агрегаты в матрице ПАн-ПАМПСК

4.2. Краситель ЦК-З в матрице полифлуорена

4.3. Испытания новых полифлуоренов применительно к ОСИД

ВЫВОДЫ

Рекомендованный список диссертаций по специальности «Физическая химия», 02.00.04 шифр ВАК

Введение диссертации (часть автореферата) на тему «Строение J-агрегатов как центров свечения в полимерных электролюминесцентных структурах»

В начале 2000-х годов появились первые сведения об исследовании одномерных (Ш) наноматериалов, представляющих собой нанопровода, нанотрубки (имеется в виду не широко известные углеродные нанотрубки), наноленты и т.д. Эти материалы с необычными электрофизическими и оптоэлектронными свойствами оказались перспективными наноразмерными конструкционными элементами в создании нового поколения функциональных микро- и наноустройств, включая электрохимические сенсоры, светодиоды, полевые транзисторы, солнечные элементы и т.п.

На ранних этапах исследования в этой области повышенное внимание уделялось неорганическим Ш наноматериалам [1]. Однако как показали исследования последних лет, не меньший интерес для практики представляют одномерные функциональные наноматериалы на основе органических молекул [2]. Основные преимущества, выгодно отличающие их от неорганических структур, - это широкие возможности молекулярного дизайна, технологичность, относительно низкая стоимость получения и ряд других. Вместе с тем они обладают высокой проводимостью, а также эффективной фотолюминесценцией и электролюминесцентными свойствами [3].

Отдельное место среди широкого круга органических наноматериалов занимают высокоупорядоченные органические надмолекулярные структуры, известные как 1-агрегаты [4]. Особо выделяются своим морфологическим разнообразием .[-агрегаты на основе молекул цианиновых красителей, имеющие одно-, двух- и трёхмерную форму, размер которых может меняться в пределах от нескольких нанометров до десятков микрон. 1-агрегаты, имеющие морфологию протяженных лент или трубок, можно считать Ш структурами.

Актуальность темы. J-агрегаты цианиновых (полиметиновых) красителей, обладая эффективной люминесценцией, электроно-дырочной проводимостью, являются привлекательными для практического применения в органической оптоэлектронике. Этим объектам присуща морфологическая и структурная вариабельность, способность образовывать всевозможные типы структур, обладающих различными свойствами. Таким образом, у исследователей есть потенциально богатые возможности для создания на основе J-агрегатов микро- и наноразмерных устройств с улучшенными рабочими характеристиками, например оптоэлектронных датчиков, дисплеев с цветовой настройкой, химических сенсоров, оптических волноводов.

Перспектива практического применения J-агрегатов связана также с их использованием в органических светоизлучающих диодах (ОСИД, в зарубежной литературе - OLED) в составе полимерных композитов на основе широкозонных полимеров, где эти надмолекулярные структуры служат наноразмерными центрами свечения, имеющими близкие к монохроматическим полосы оптического излучения, расположенные в различных областях спектра. В результате в одной и той же полимерной матрице появляется возможность генерировать как индивидуальные полосы триады RGB, так и излучение с заданными координатами цветности. Как правило, J-агрегаты в объёме полимерной матрицы распределены изотропно, что далеко не всегда позволяет использовать их полезные возможности. Определенная ориентация агрегатов в объеме полимерного композита потенциально способна придать рабочему слою новые полезные электронно-дырочные транспортные свойства, обусловленные анизотропией.

Поскольку оптические и транспортные свойства J-агрегатов, помимо строения молекул красителей, определяются их собственной морфологией и молекулярно-кристаллическим строением, получение достоверной информации о последних необходимо для успешного создания новых оптоэлектронных наноматериалов с полезными свойствами.

В этой работе представлены результаты исследования строения J-агрегатов ряда цианиновых красителей методом атомно-силовой микроскопии (АСМ). Были также изучены электролюминесцентные свойства карбоцианиновых красителей в матрице водорастворимого интерполимерного комплекса полианилина (ПАн-ПАМПСК) и органорастворимого полифлуорена (ПФ). Получен и исследован ряд новых широкозонных производных полифлуорена с целью использования в органических светоизлучающих диодах (ОСИД) в качестве электроактивных матриц для формирования полимерных композитов на основе J-агрегатов.

Работа была выполнена при финансовой поддержке Международного Научно-Технического Центра (проект 3718) и Федеральной Целевой Программы, госконтракт №02.523.11.3002 (шифр 2007-3-2.3-07-01-009) по теме: "Разработка нового поколения систем визуального отображения информации на основе органических электролюминесцентных материалов". В материальном отношении работу также поддерживал госконтракт Министерства образования и науки №16.516.11.6072. (ФЦП шифр 2011-1.6-2.6-ИР1), связанный с разработкой нового поколения источников света на основе органических светодиодов.

Цели работы:

1. Изучение морфологии J-агрегатов некоторых цианиновых красителей методом АСМ высокого разрешения.

2. Построение моделей J-агрегатов на основе полученных данных атомно-силовой микроскопии. Рассмотрение возможности структурной вариабельности агрегатов без изменения морфологии.

3. Формирование полимерных нанокомпозитов состава .Г-агрегаты/ПАн-ПАМПСК и изучение их электролюминесцентных свойств. Выяснение роли размера и морфологии нанофазы 1-агрегатов в механизме электролюминесценции композита 1-агрегаты/ПАн-ПАМПСК в структуре ОСИД.

4. Изучение нового типа функциональных полимерных материалов с электролюминесцентными свойствами на основе нанокомпозитов состава 1-агрегаты/полифлуорен. Изучение влияния концентрации нанофазы в светоизлучающей матрице полифлуорена на спектральные характеристики электролюминесцентных слоев. Сравнение механизмов транспорта носителей заряда и электролюминесценции в композитах состава 1-агрегаты/ПАн-ПАМПСК и 1-агрегаты/ПФ.

5. Получение новых производных полифлуорена. Исследование их спектральных, электрофизических, электрохимических свойств и возможности использования в качестве матриц для электролюминесцентных полимерных нанокомпозитов.

Научная новизна. В работе впервые применен метод атомно-силовой микроскопии высокого разрешения для исследования .[-агрегатов. Показаны отличительные особенности морфологии 1-агрегатов, однозначно указывающие на то, образовались ли агрегаты в объеме раствора или на поверхности подложки. Предложены адекватные модели симметричного и асимметричного пространственного расположения мономеров красителей в слоях .[-агрегатов с различной морфологией. Показано, что важное значение для эффективной работы ОСИД, содержащего электролюминесцентный слой состава 1-агрегаты/полимер, имеют линейные размеры и морфология .1-агрегатов. Изучен ряд новых производных полифлуорена применительно к их использованию в органических светодиодах, получены необходимые спектральные характеристики; обнаружено влияние методики формирования пленок ПФ на спектр их электролюминесценции в структуре ОСИД.

Практическая значимость работы. Эффективное и целенаправленное использование наноразмерных J-агрегатов в качестве излучающих центров в органических светодиодных структурах требует достоверной информации об их морфологии, геометрических размерах и молекулярно-кристаллическом строении. Нами использован метод АСМ высокого разрешения. Разработан ряд полезных методических приемов применения этого метода и подходов к анализу экспериментальных данных при изучении моно- и бислойных структур на основе цианиновых красителей. Убедительно показано, что J-агрегаты формируются как в объёме раствора, так и на поверхности подложки. Важное практическое значение имеет тот факт, что морфология агрегатов полностью зависит от того, в каком месте и при каких условиях они были сформированы. На примере одной из структур ОСИД была показана важность размера и морфологии нанофазы в композите J-агрегаты/полимер. Изучен ряд новых производных полифлуорена для использования в качестве активных широкозонных матриц при формировании нанокомпозитов для светоизлучающих слоев ОСИД (о необходимости создания подобных модифицированных ПФ см. в разделе 1.3.4.).

Апробация работы. Результаты диссертационной работы докладывались на научных семинарах Института физической химии и электрохимии им. А.Н. Фрумкина РАН, на конференции молодых ученых ИФХЭ РАН (2010 г.), а также на целом ряде конференций и симпозиумов: International Conference "Organic Nanophotonics" (ICON-RUSSIA, Россия, Санкт-Петербург, 2009), V Всероссийская Каргинская Конференция (Полимеры-2010, Россия, Москва), 9-th International Frumkin Symposium (Россия, Москва, 2010), 7th international symposium "Molecular mobility and order in polymer systems" (Россия, Санкт-Петербург, 2011), IV Всероссийская конференция по наноматериалам (Нано-2011, Россия, Москва).

Публикации. Материалы диссертации опубликованы в 6 статьях (из них 5 -в журналах рекомендованных ВАК) и в трудах 6 конференций.

Структура и объем работы. Диссертация состоит из введения, четырёх глав (литературный обзор, экспериментальная часть, две главы обсуждения), выводов и списка цитируемой литературы, включающего 249 наименований. Работа изложена на 214 страницах, содержит 88 рисунков, 25 схем.

Похожие диссертационные работы по специальности «Физическая химия», 02.00.04 шифр ВАК

Заключение диссертации по теме «Физическая химия», Позин, Сергей Игоревич

выводы

1. Впервые методом атомно-силовой микроскопии с точностью измерения высот в ангстремном диапазоне и повышенным разрешением при визуализации кристаллографических особенностей выполнено систематическое исследование молекулярной организации у .[-агрегатов ряда цианиновых красителей.

2. Установлено, что .[-агрегаты имеют характерные морфологические особенности в зависимости от места их зарождения и роста - в объёме раствора или на атомно-гладкой поверхности. Высокая степень точности измерения высот слоистых структур агрегатов позволила построить адекватные модели симметричного и асимметричного пространственного расположения мономеров красителей в .[-агрегатах с различной морфологией.

3. Изучены электролюминесцентные свойства .[-агрегатов карбо-цианиновых красителей в матрице водорастворимого интерполимерного комплекса полианилина (ПАн-ПАМПСК). На примере этого композита показано, что для наблюдения электролюминесценции .[-агрегатов передача энергии возбуждения от проводящей матрицы к нанофазе агрегатов не обязательна.

4. Впервые показано, что для эффективной работы ОСИД важное значение имеют линейные размеры и морфология .[-агрегатов, выступающих в качестве центров свечения в полимерных электролюминесцентных композитах.

5. Получены данные электролюминесценции (ЭЛ) карбоцианинового красителя в матрице органорастворимого полифлуорена (ПФ). Рассмотрен механизм этого явлении в сравнении с механизмом ЭЛ 1-агрегатов этого же красителя в матрице ПАн-ПАМПСК.

6. Исследован ряд новых производных полифлуорена применительно к их самостоятельному использованию в органических светодиодах (ОСИД) и к возможному использованию в качестве электроактивных матриц полимерных нанокомпозитов на основе .[-агрегатов цианиновых красителей. Получены электролюминесцентные характеристики ОСИД-структур. Сформулированы предложения по синтезу, использованию и дальнейшему исследованию сополимеров флуорена.

Список литературы диссертационного исследования кандидат химических наук Позин, Сергей Игоревич, 2012 год

1. Daniel Stäb. How can organic materials be made into transistors and light-emitting diodes? Department of Physics, Heriot Watt University, Edinburgh, March 2005. - 11 p.

2. Denkschrift der DPG zum Jahr der Physik. Deutsche Physikalische Gesellschaft (DPG), 2000.

3. Bernanose A., Comte M., Vouaux P. A new method of emission of light by certain organic compounds. // Journal de Chimie Physique. 1953. - V. 50. - P. 64.

4. Kallmann H., Pope M. Positive hole injection into organic crystals. // Journal of Chemical Physics. ~ 1960. V. 32. - P. 300-301.

5. Bolto B.A., McNeill R., Weiss D.E. Electronic conduction in polymers. III. Electronic properties of polypyrrole. // Australian Journal of Chemistry. -1963.-V. 16.-P. 1090-1103.

6. McGinness J., Corry P., Proctor P. Amorphous semiconductor switching in melanins. // Science. 1974. - V. 183. - P. 853-855.

7. Partridge R. Radiation sources. // US Patent № 3995299. 1976.

8. Gurnee E., Fernandez R. Organic electroluminescent phosphors. // US Patent №3172862.- 1965.

9. Рожицкий H.H. Электрохимическая люминесценция. — Монография, X., ХТУРЭ, 2000. 320 с.

10. Tang C.W., Vanslyke S.A. Organic electroluminescent diodes. // Applied Physics Letters. 1987. - V. 51. - P. 913-915.

11. Burroughes J., Bradley D., Brown A., Marks R., Mackay K., Friend R., Burns P., Holmes A. Light-emitting diodes based on conjugated polymers. // Nature. 1990. - V. 347. - P. 539-541.

12. Braun D., Heeger A. Visible light emission from semiconducting polymer diodes. // Appl. Phys. Lett. 1991. - V. 58. - P. 1982-1984.

13. Misra A., Kumar P., Kamalasanan M., Chandra S. White organic LEDs and their recent advancements. // Institute of Physics Publishing, Semiconductor Science and Technology. 2006. - V. 21. - R35-R47.

14. Narukawa Y., Ichikawa M., Sanga D., Sano M., Mukai T. White light emitting diodes with super-high luminous efficacy. // Journal of Physics D: Applied Physics. 2010. - V. 43. - article 354002.

15. Яворский Б.М., Детлаф A.A., Лебедев A.K. Справочник no физике. — ООО "Издательство "Мир и Образование", 2004. 1056 с.

16. Дж. Гиллет. Фотофизика и фотохимия полимеров. Мир, 1988, — 435 с.

17. Регель А.Р., Глазов В.М. Физические свойства электронных расплавов.- Наука, 1980. 296 с.

18. Аветисов И.Х., Чередниченко А.Г., Зиновьев А., Хомяков А., Ларюшкин А., Кондратьева Ю., Галузина С. Органическая электролюминесценция и дисплейные устройства на ее основе (аналитический обзор). — М. РХТУ, 2007.

19. Киреев П.С. Физика полупроводников. М., Высшая школа, 1975. -584 с.

20. Fowler R., Nordheim L. Electron emission in intense electric field. // Proceedings of the Royal Society, London. -1928. V. 119A. - P. 173-181.

21. Marks R., Bradley D., Jackson R.W., Burn P.L., Holmes A.B. Charge injection and transport in poly(/?-phenylene vinylene) light emitting diodes. // Synth. Met. 1993. - V. 57. - P. 4128-4133.

22. Parker I.D. Carrier tunneling and device characteristics in polymer light-emitting diodes. // J. Appl. Phys. 1994. - V. 75. - P. 1656-1666.

23. Davids P., Kogan Sh.M., Parker I., Smith D. Charge injection in organic light-emitting diodes: Tunneling into low mobility materials. // Appl. Phys. Lett. 1996. - V. 69. - P. 2270-2272.

24. Antoniades H., Abkowitz M., Hsieh В. Carrier deep-trapping mobility-lifetime products in poly(p-phenylene vinylene). I I Appl. Phys. Lett. 1994. - V. 65. - P. 2030-2032.

25. Yang Y., Westerweele E., Zhang C., Smith P., Heeger A.J. Enhanced performance of polymer light-emitting diodes using high-surface area polyaniline network electrodes. // J. Appl. Phys. -1995. V. 77. - P. 694-698.

26. Carter S.A., Scott J., Brock P. Enhanced luminance in polymer composite light emitting devices. II Appl. Phys. Lett. ~ 1997. V. 71. - P. 1145-1147.

27. Колесников B.A., Золотаревский В.И., Ванников A.B. Аномальные вольтамперные характеристики субмикронных слоев органических полупроводников. //Химическая физика. — 2004. Т. 23. - С. 90-96.

28. Zhu X., Sun J., Peng H., Wong M., Kwok H.-S. Inverted top-emitting organic light-emitting devices using vanadium pentoxide as anode buffer layer. // SID. 05 Digest. - P. 793.

29. Zhu X.L., Sun J.X., Yu X.M., Wong M., Kwok H.-S. Very bright and efficient top-emitting OLED with ultra-thin Yb as effective electron injector. // SID. 06 Digest. - P. 1292.

30. Jang J., Ha J., Kim K. Organic light-emitting diode with polyaninline-poly (styrene sulfonate) as a hole injection layer. // Thin Solid Films. 2008. -V. 516.-P. 3152-3156.

31. Иванов В.Ф., Грибкова O.JI., Чеберяко K.B., Некрасов А.А., Тверской В.А., Ванников А.В. Матричный синтез полианилина в присутствии поли-(2-акриламидо-2-метил-1-пропан)-сульфоновой кислоты. // Электрохимия. 2004. - Т. 40. - С. 339-345.

32. Zhou Y., Yuan Y., Cao L., Zhang J., Pang H., Lian J., Zhou X. Improved stability of OLEDs with mild oxygen plazma treated PEDOT:PSS. // Journal of Luminescence. 2007. - V. 122-123. - P. 602-604.

33. Shi S., Ma D. NaCl/Ca/Al as an efficient cathode in organic light-emitting devices. // Applied Surface Science. 2006. - V. 252. - P. 6337-6341.

34. Logdlund M, Bredas J. Theoretical studies of the interaction between aluminum and poly(/?-phenylenevinylene) and derivatives. // J. Chern. Phys. 1994.-V. 101.-P. 4357-4364.

35. Vannikov A.V., Grishina A.D., Novikov S.V. Electron transport and electroluminescence in polymer layers. // Russian Chemical Reviews. -1994.-V. 63.-P. 103-123.

36. Тимонов A.M., Васильева C.B. Электронная проводимость полимерных соединений. // Соросовский образовательный журнал, Химия. — 2000. -Т. 6.-С. 33-39.

37. Borsenberger P., Magin Е., М. Der van Auweraer, F.C. de Schryver. The role of disorder on charge transport in molecularly doped polymers and related materials. И Phys. Stat. Sol. (A). 1993. - V. 140. - P. 9-47.

38. Bassler H. Charge transport in disordered organic photoconductors: a Monte Carlo simulation study. // Phys. Stat. Sol. (В). 1993. -V. 175. - P. 15-56.

39. Graupner W., Leditzky G., Leising G., Scherf U. Shallow and deep traps in conjugated polymers of high intrachain order. // Phys. Rev. (B).~ 1996.- V. 54. -P. 7610-7613.

40. Friend R.H., Gymer R., Holmes A., Burroughes J.H., Marks R., Taliani C., Bradley D.D.C., D. Dos Santos, Bredas J.L., Logdlund M., Salaneck W.R. Electroluminescence in conjugated polymers. // Nature. — 1999. — V. 397. -P. 121-128.

41. Kwok H.L. Carrier mobility in semiconductor thin films. // Rev. Adv. Mater. Sci. 2003. - V. 5. - P. 62-66.

42. Shi Y., Liu J., Yang Y. Device performance and polymer morphology in polymer light emitting diodes: The control of thin film morphology and device quantum efficiency. HJ. of Appl. i%s.-2000.-V.87.-P.4254-4263.

43. Vaubel G., Bässler H., Möbius D. Reaction of singlet excitons at an anthracene/metal interface: Energy transfer. // Chem. Phys. Lett. — 1971. -V. 10.-P. 334-336.

44. Kurczewska H., Bässler H. Energy transfer across an anthracene-gold interface. II J. Lum. 1977. - V. 15. - P. 261-266.

45. Albrecht U., Bässler H. Efficiency of charge recombination in organic light emitting diodes. // Chem. Phys. 1995. - V. 199. - P. 207-214.

46. Hammes G.G. Prinsipals of Chemical Kinetics. New York: Academic Press, 1978. - 278 p.

47. Albrecht U., Bässler H. Langevin-type charge carrier recombination in a disordered hopping system. 11 Phys. Stat. Sol. (®;.-1995.-V.191.-P.455-459.

48. Baigent D., Greenham N., Grüner J., Marks R., Friend R., Moratti S., Holmes A. Light-emitting diodes fabricated with conjugated polymers -recent progress. // Synth. Met. 1994. - V. 67. - P. 3-10.

49. Pommerehne J., Vestweber H., Guss W., Mahrt R., Bässler H., Porsch M., Daub J. Efficient two layer LEDs on a polymer blend basis. // Adv. Mat. —1995.-V. 7.-P. 551-554.

50. Bässler H. Injection, transport and recombination of charge carriers in organic light-emitting diodes. // Polymer. Adv. Tech. 1998. — V. 9. -P. 402-418.

51. Tak Y.-H., Bässler H. Charge carrier recombination in organic bilayer electroluminescent diodes. II. Experiment. II J. Appl. Phys. 1997. - V. 81. -P. 6963-6967.

52. Greenham N., Friend R.H. Semiconductor device physics of conjugated polymers. // Solid State Physics: Advances in Research and Applications. —1996.-V. 49.-P. 1-149.

53. Wohlgenannt M., Tandon K., Mazumder S., Ramasesha S., Vardeny Z.V. Formation cross-sections of singlet and triplet excitons in ^-conjugated polymers. // Nature. 2001. - V. 409. - P. 494-497.

54. Baldo M.A., O'Brien D.F., You Y., Shoustikov A., Sibley S., Thompson M.E., Forrest S.R. Highly efficient phosphorescent emission from organic electroluminescent devices. // Nature (London). 1998. - V. 395. -P. 151-153.

55. O'Brien D.F., Giebeler C., Fletcher R.B., Cadby A.J., Palilis L.C., Lidzey D.G., Lane P.A., Bradley D.D.C., Blau W. Electrophosphoresence from a doped polymer light emitting diode. // Synth. Met. 2001. - V. 116. -P. 379-383.

56. Singh M., Chae H.S., Froehlich J., Kondou T., Li S., Mochizuki A., Jabbour G. Electroluminescence from printed stellate polyhedral oligomeric silsesquioxanes. // Soft Matter. 2009. - V. 5. - P. 3002.

57. Ponomarenko S.A., Kirchmeyer S. Conjugated organosilicon materials for organic electronics and photonics. // Adv. Polym. Sci. 2011. - V. 235. -P. 33-110.

58. Yan M., Rothberg L., Papadimitrakopoulos F., Galvin M., Miller T. Spatially indirect excitons as primary photoexcitations in conjugated polymers. // Phys. Rev. Lett. 1994. - V. 72. - P. 1104-1107.

59. Rothberg L., Yan M., Papadimitrakopoulos F., Galvin M., Kwock E., Miller T. Photophysics of phenylenevinylene polymers. // Synth. Met. -1996.-V. 80.-P. 41-58.

60. Mollay B., Lemmer U., Kersting R., Mahrt R., Kurz H., Kauffmann H., Bassler H. Dynamics of singlet excitations in conjugated polymers: Poly(phenylenevinylene) and poly(phenylphenylenevinylene). // Phys. Rev. (B). 1994. - V. 50. - P. 10769-10779.

61. Yan M., Rothberg L., Papadimitrakopoulos F., Galvin M., Miller T. Defect quenching of conjugated polymer luminescence. // Phys. Rev. Lett. 1994. -V. 73.-P. 744-747.

62. Cnossen G., Drabe K., Wiersma D. Fluorescence properties of submonolayers of rhodamine-6G in front of a mirror. // J. Chem. Phys. 1993. - V. 98. -P. 5276-5280.

63. Shin S.B., Gong S., Lee H., Jang J., Gong M., Ryu S., Lee J., Chang Y., Chang H. Improving light efficiency of white polymer light emitting diodes by introducing the TPBi exciton protection layer. // Thin Solid Films. 2009. -V. 517.-P. 4143-4146.

64. Gettinger C., Hegger A.J., Drake J., Pine D. A photoluminescence study of poly(phenylene vinylene) derivatives: The effect of intrinsic persistence length. II J. Chem. Phys. 1994. - V. 101. - P. 1673-1678.

65. Pierschbacher M.D., Ruoslahti E. Cell attachment activity of fibronectin can be duplicated by small synthetic fragments of the molecule. // Nature. -1984.-V. 309.-P. 30-33.

66. Vestweber H., Oberski J., Greiner A., Heitz W., Mahrt R., Bassler H. Electroluminescence from phenylenevinylene-based polymer blends. // Adv. Mater. Opt. Electron. 1993. - V. 2. - P. 197-204.

67. Grem G., Leditzky G., Ullrich В., Leising G. Blue electroluminescent device based on a conjugated polymer. // Synthetic Metals. 1992. — V. 51. — P. 383-389.

68. Свердлова O.B. Электронные спектры в органической химии. — 2 изд., Л., 1985. 126 с.

69. Ohmori Y., Uchida M., Muro K., Yoshino K. Blue electroluminescent diodes utilizing poly(alkylfluorene). // Jpn. J. Appl. Phys. 1991. - V. 30. -P. L1941-L1943.

70. Кештов M.Jl., Мальцев Е.И., Лыпенко Д.А., Позин С.И., Хохлов А.Р. Новые фотолюминесцентные фенилзамещенные полифлуорены. // Высокомолекулярные соединения. 2010. - Т. 52. - С. 2203-2208.

71. Клар Э. Полициклические углеводороды, т. 2. Пер. с англ., М., 1971.

72. Waltman J.R., Bargon J. The electropolymerization of polycyclic hydrocarbons: substituent effects and reactivity/structure correlations. // Journal of Electroanalytical Chemistry. — 1985. — V. 194. — P. 49-62.

73. Fukuda M., Sawada K., Yoshino K. Fusible conducting poly(9-alkyl-fluorene) and poly(9,9-dialkylfluorene) and their characteristics. // Jpn. J. Appl. Phys. 1989. - V. 28. - P. L1433-L1435.

74. Fukuda M., Sawada K., Yoshino K. Synthesis of fusible and soluble conducting polyfluorene derivatives and their characteristics. // J. Polym. Science A: Polym. Chem. 1993. - V. 31. - P. 2465-2469.

75. Mario Leclerk. Polyfluorenes: Twenty years of progress. 11 Journal of Polymer Science (part A: Polym. Chem.). 2001. - V. 39. - P. 2867-2873.

76. Pei Q., Yang Y. Efficient photoluminescence and electroluminescence from a soluble polyfluorene. II J. Am. Chem. Soc. 1996. - V. 118. - P. 7416-7417.

77. Miyaura N., Yamada K., Suzuki A. A new stereospecific cross-coupling by the palladium-catalyzed reaction of 1-alkenylboranes with 1-alkenyl or 1-alkynyl halides". // Tetrahedron Letters. 1979. - V. 20. - P. 3437-3440.

78. Ranger M., Rondeau D., Leclerc M. New well-defined poly(2,7-fluorene) derivatives: photoluminescence and base doping. // Macromolecules. -1997. V. 30. - P. 7686-7691.

79. Cho H.N., Kim J.K., Kim D.Y, Kim C.Y., Song N.W., Kim D. Statistical copolymers for blue-light-emitting diodes. // Macromolecules. 1999. -V. 32.-P. 1476-1481.

80. Stefan M., Javier A., Osaka I., McCullough R. Grignard metathesis method (GRIM): toward a universal method for the synthesis of conjugated polymers. // Macromolecules. 2009. - V. 42. - P. 30-32.

81. Monkman A., Rothe C., King S., Dias F. Polyfluorene photophysics. // Adv. in Polym. Sci. 2008. - V. 212 (polyfluorenes). - P. 187-225.

82. Scholes G., Larsen D., Fleming G., Rumbles G., Burn P.L. Origin of line broadening in the electronic absorption spectra of conjugated polymers: Three-pulse-echo studies of MEH-PPV in toluene. // Phys. Rev. (B). 2000. -V. 61.-P. 13670-13678.

83. Rothe C., Monkman A.P. Triplet exciton migration in a conjugated polyfluorene. // Phys. Rev. (B). 2003. - V. 68. - P. 075208.

84. Rothe C., King S., Monkman A.P. Long-range resonantly enhanced triplet formation in luminescent polymers doped with iridium complexes. // Nat. Mater. 2006. - V. 5. - P. 463-466.

85. Charas A., Barbagallo N., Morgado J., Alcacer L. Synthesis and optical properties of poly(-fluorene)-based alternating copolymers. // Synthetic Metals. 2001. - V. 122. - P. 23-25.

86. Wu C.-S., Chen Y. Copolyfluorenes containing bipolar groups: synthesis and application to enhance electroluminescence of MEH-PPV. // Macromolecules. 2009. - V. 42. - P. 3729-3737.

87. Lo C.-N., Hsu C.-S. Synthesis and electroluminescence properties of white-light single polyfluorenes with high-molecular weight by Click Reaction. II J. of Polymer Science (part A: Polym. Chem.).~20\ 1.-V.49. P.3355-3365.

88. Redecker M., Bradley D.D.C., Inbasekaran M., Woo E. Nondispersive hole transport in an electroluminescent polyfluorene. II Appl Phys. Lett. 1998. -V. 73.-P. 1565-1567.

89. Chua L.-L., Zaumseil J., Chang J., Ou E., Ho P., Sirringhaus H., Friend R.H. General observation of n-type field-effect behaviour in organic semiconductors. // Nature. 2005. - V. 434. - P. 194-199.

90. Knaapila M., Winokur M. Structure and morfology of polyfluorenes in solutions and the solid state. // Adv. in Polym. Sci. 2008. - V. 212 (polyfluorenes). - P. 227-272.

91. Grell M., Bradley D.D.C., Inbasekeran M., Woo E. A glass-forming conjugated main-chain liquid crystal polymer for polarized electroluminescence applications. II Adv. Mater. 1997. - V. 9. — P. 798-802.

92. Scherf U., List E.J.W. Semiconducting polyfluorenes towards reliable structure - property relationships. II Adv. Mater. -2002. -V. 14. - P. 477-487.

93. Prieto I., Teetsov J., Fox M., Bout D., Bard A. Study of excimer emission in solutions of poly(9,9-dioctylfluorene) using electrogenerated chemiluminescence. // J. Phys. Chem. (A). 2001. - V. 105. - P. 520.

94. Bliznyuk V.N., Carter S., Scott J., Klarner G., Miller R., Miller D. Electrical and photoinduced degradation of polyfluorene based films and light-emitting devices. // Macromolecules. 1999. - V. 32. - P. 361-369.

95. Zojer E., Pogantsch A., Hennebicq E., Beljonne D., Bredas J., P. de Freitas, Scherf U., List E. Green emission from poly(fluorene)s: The role of oxidation. // J. Chem. Phys. 2002. - V. 117. - P. 6794-6802.

96. Zhang T., Deng Y., Johnson S., Liu G. Highly efficient blue polyfluorene-based polymer light-emitting diodes through solvent vapour annealing. II J. Phys. D: Appl. Phys. 2009. - V. 42. - article 145104.

97. Hoven C.V., Garcia A., Bazan G., Nguyen T.-Q. Recent applications of conjugated poly electrolytes in optoelectronic devices. // Adv. Mater. —2008. -V. 20.-P. 3793-3810.

98. Liu J., Bu L., Dong J., Zhou Q., Geng Y., Ma D., Wang L., Jing X., Wang F. Green light-emitting polyfluorenes with improved color purity incorporated with 4,7-diphenyl-2,l,3-benzothiadiazole moieties. // J. Mater. Chem. ~ 2007. V. 17. - P. 2832-2838.

99. Cho N., Hwang D., Lee J., Jung В., Shim H. Synthesis and color tuning of new fluorene-based copolymers. // Macromolecules. 2002. - V. 35. -P. 1224-1228.

100. Hou Q., Xu X., Guo Т., Zeng X., Luo S., Yang L. Synthesis and photovoltaic properties of fluorene-based copolymers with narrow band-gap units on the side chain. // European Polymer J. -2010.-V.46. P. 2365-2371.

101. Lee J., Cho H.-J., Jung B.-J., Cho N.S., Shim H.-K. Stabilized blue luminescent polyfluorenes: introducing polyhedral oligomeric silsesquioxane. // Macromolecules. 2004. - V. 37. - P. 8523-8529.

102. Kappaun S., Eder S., Sax S., Saf R., Mereiter K., List E.J.W., Slugov C. WPLEDs prepared from main-chain fluorene-iridium(III) polymers. // J. Mater. Chem. 2006. - V. 16. - P. 4389-4392.

103. M. Strukelj M., F. Papadimitrakopoulos F., T. Miller Т., L. Rothberg L. Design and application of electron-transporting organic materials. // Science. 1995. - V. 267. - P. 1969-1972.

104. Zhou X., He J., Liao L., Lu M., Ding X., Hou X., Zhang X., He X., Lee S. Real-time observation of temperature rise and thermal breakdown processes in organic LEDs using an IR imaging and analysis system. // Adv. Mater. -2000.-V. 12.-P. 265-269.

105. Chen J.P., Markiewicz D., Lee V., Klaerner G., Miller R., Scott J.C. Improved efficiencies of light-emitting diodes through incorporation of charge transporting components in tri-block polymers. // Synthetic Metals. — 1999.-V. 107.-P. 203-207.

106. Wu C.-W., Tsai C.-M., Lin H-C. Synthesis and characterization of poly(fluorene)-based copolymers containing various 1,3,4-oxadiazole dendritic pendants. // Macromolecules. 2006. - V. 39. - P. 4298-4305.

107. Shu C.-F., Dodda R., Wu F., Liu M., Jen A. Highly efficient blue-light-emitting diodes from polyfluorene containing bipolar pendant groups. // Macromolecules. 2003. - V. 36. - P. 6698-6703.

108. Кештов M.JI., Мальцев Е.И., Марочкин Д., Позин С., Лыпенко Д., Перевалов В., Петровский П., Хохлов А.Р. Новые биполярные сополифлуорены: синтез, фото- и электролюминесцентные свойства. // Доклады Академии наук. — 2011. Т. 439. — С. 56-61.

109. Pogantsch A., Wenzl F., List E.J.W., Leising G., Grimsdale A., Mullen K. Polyfluorenes with dendron side chains as the active materials for polymer light-emitting devices. II Adv. Mater. 2002. - V. 14. - P. 1061-1064.

110. Yu W.L., Pei J., Huang W., Heeger A.J. Spiro-fimctionalized polyfluorene derivatives as blue light-emitting materials. II Adv. Mater. — 2000. V. 12. -P. 828-831.

111. Saragi Т., Spehr Т., Siebert A., Fuhrmann-Lieker Т., Salbeck J. Spiro compounds for organic optoelectronics. // Chem. Rev. — 2007. V. 107. — P. 1011-1065.

112. Zeng G., Yu W., Chua S., Huang W. Spectral and thermal spectral stability study for fluorene-based conjugated polymers. // Macromolecules. ~ 2002. -V. 35.-P. 6907-6914.

113. Wong W.W.H., Holmes A.B. Poly(dibenzosilole)s. // Adv. in Polym. Sei. 2008. - V. 212 (Polyfluorenes). - P. 85-98.

114. Качковский А.Д. Строение и цвет полиметиновых красителей. — Наукова думка, Киев, 1989. 231 с.

115. Джеймс Т.Х. Теория фотографического процесса. Д.: Химия, 1980. -672 с.

116. Jelley Е.Е. Spectral absorption and fluorescence of dyes in the molecular state. II Nature. 1936. - V. 138. - P. 1009-1010.

117. Scheibe G. Über die Veränderlichkeit des Absorptionsspektrums einiger Sensibilisierungsfarbstoffe und deren Ursache. II Angew. Chem. — 1936. -V. 49.-P. 563.

118. Шапиро Б.И. Молекулярные ансамбли полиметиновых красителей. // Успехи химии. 2006. - Т. 75. - С. 484-510.

119. Peyratout С., Daehne L. Aggregation of thiacyanine derivatives on polyelectrolytes. // Phys. Chem. Chem. Phys. 2002. - V. 4. - P. 3032-3039.

120. Chaudhuri D., Li D., Che Y., Shafran E., Gerton J., Zang L., Lupton J.M. Enhancing long-range exciton guiding in molecular nanowires by H-aggregation lifetime engineering. // Nano Lett.-2011. -V. 11. P. 488-492.

121. Shelkovnikov V.V., Zhuravlev F.A., Orlova N.A., Plekhanov A.I., Safonov V.P. Polymer films of J-aggregated cyanine dyes and metal clusters for nonlinear optical applications. II J. Mater. Chem. 1995. -V. 5. - P. 1331-1334.

122. Ash Well G.J., Hargreaves R.C., Baldwin C.E., Bahra G.S., Brown C.R. Improved second-harmonic generation from Langmuir-Blodgett films of hemicyanine dyes. // Nature. 1992. - V. 357. - P. 393-394.

123. AshWell G.J., Crossland W.A., Martin P.J., Thompson P.A., Hewson A.T., Marsden S.D. A two-legged spacer molecule for alternate layer LB film deposition with optically nonlinear dyes. // J. Mater. Res. Soc., Symp. Proc.- 1992. V. 247. - P. 787-792.

124. Walker B.J., Dorn A., Bulovic V., Bawendi M.G. Color-selective photocurrent enhancement in coupled J-aggregate/nanowires formed in solution. // Nano Lett. 2011. - V. 11. - P. 2655-2659.

125. Slavnova T.D., Gorner H., Chibisov A.K. Cyanine-based J-aggregates as a chirality-sensing supramolecular system. // J. Phys. Chem. (B). 2011. -V. 115.-P. 3379-3384.

126. Chibisov A.K., Slavnova T.D., Gorner H. Electron transfer reactions induced by the triplet state of thiacarbocyanine dimers. // Chemical Physics.2004. V. 299.-P. 1-10.

127. Успенская А.Ю., Шапиро Б.И. J-агрегация цианиновых красителей в фотографических слоях. // Журн. науч. и прикл. фотографии. — 2000. -Т. 45.-С. 46-75.

128. Delaney J., Morrow M., Eckhardt C.J. Observation of the J-band in the crystal spectra of pseudoisocyanine (PIC). // Chemical Physics Letters. -1985.-V. 122.-P. 347-351.

129. Herz A.H. Aggregation of sensitizing dyes in solution and their adsorption onto silver halides. // Adv. Colloid Interface Sci. 1977. - V. 8. - P. 237-298.

130. Tanaka T., Matsubara T. Concentration- and temperature-dependent size of metastable J-aggregate particles of cyanine dyes. // J. Imag. Sci. & Techn. -1993.-V. 37.-P. 585-588.

131. Knapp E.W. Lineshapes of molecular aggregates, exchange narrowing and intersite correlation. // Chem. Phys. 1984. - V. 85. - P. 73-82.

132. Slavnova T.D., Chibisov A.K., Gôrner H. Kinetics of salt-induced J-aggregation of cyanine dyes. // J. Phys. Chem. (A). 2005. - V. 109. -P. 4758-4765.

133. Gôrner H., Slavnova T.D., Chibisov A.K. Kinetics of spontaneous formation of chiral J-aggregate of N-sulfobutyl oxacarbocyanine. // J. Phys. Chem. (B). 2010. - V. 114. - P. 9330-9337.

134. Kobayashi T. J-Aggregates. World Scientific Publishing Company, Singapore, London, 1996. - 228 p.

135. Bliznyuk V.N., Kirstein S., Môhwald H. Structural control of optical spectra of two-dimensional mixed dye crystals. // J. Phys. Chem. 1993. -V. 97. - P. 569-574.

136. Chibisov A.K., Slavnova T.D., Gôrner H. Kinetics of J-aggregation of a thiacarbocyanine dye in aqueous solution: Novel aggregate mediated by alcohols and metal ions. // Chemical Physics Letters. 2006. - V. 424. -P. 307-311.

137. Mishra A., Behera R.K., Behera P.K., Mishra B.K., Behera G.B. Cyanines during the 1990s: A Review. // Chem. Rev. 2000. - V. 100. - P. 1973-2011.

138. E. McRae E., M. Kasha M. Enhancement of phosphorescence ability upon aggregation of dye molecules. II J. Chem. Phys.-1958. V.28. - P. 721-723.

139. Scheibe G., Schöntag A., Katheder F. Fluoreszenz und Energiefortleitung bei reversibel polymerisierten Farbstoffen. II Naturwissenschaften. 1939. — V. 27.-P. 499-501.

140. Bücher H., Kuhn H. Scheibe aggregate formation of cyanine dyes in monolayers. // Chemical Physics Letters. 1970. - V. 6. - P. 183-185.

141. Alfimov M.V., Shtykova A.A., Razumov V.F. Photo- and thermoinitiated formation of J- and H-aggregates in amorphous dispersions of a carbocyanine dye. // High Energy Chemistry. 2006. - V. 40. - P. 18-21.

142. Zhang G., Liu M. Interfacial assemblies of cyanine dyes and gemini amphiphiles with rigid spacers: regulation and interconversion of the aggregates. // J. Phys. Chem. (B). 2008. - V. 112. - P. 7430-7437.

143. Kirstein S., Möhwald H. Exciton band structures in 2D aggregates of cyanine dyes. // Adv. Mater. 1995. - V. 7. - P. 460-463.

144. Muenter A.A., Brumbaugh D.V., Apolito J., Horn L., Spano F., Mukamel S. Size dependence of excited-state dynamics for J-aggregates at silver bromide interfaces. II J. Phys. Chem. 1992. - V. 96. - P. 2783-2790.

145. Lifanov Yu.I., Kuz'min V.A., Karyakin A.V., Chibisov A.K., Levkoev I.I. Cis-trans isomerization of polymethine dyes in the case of pulsed photoexcitation. // Russian Chemical Bulletin. 1973. - V. 22. - P. 766-768.

146. Vladimirova K.G., Freidzon A.Ya., Bagatur'yants A.A., Zakharova G.V., Chibisov A.K., Alfimov M.V. Modeling the structure, absorption spectra, and cis-trans isomerization of thiacarbocyanine dyes. // High Energy Chemistry. 2008. - V. 42. - P. 275-282.

147. Brichkin S.B., Kurandina M.A., Nikolaeva T., Razumov V.F. Effects of surfactants on the spectral properties of carbocyanine dyes in solutions. // High Energy Chemistry. 2004. - V. 38. - P. 373-380.

148. Ghelli S., Ponterini G. Identification of the photoisomers of two carbocyanines by 'HNMR spectroscopy. II J. Mol. Struct. -1995. V. 355. -P. 193-200.

149. Noukakis D., M. Van der Auweraer, Toppet S., F. De Schryver. Photophysics of thiacarbocyanine dye in organic solvent. // J. Phys. Chem. -1995. V. 99. - P. 11860-11866.

150. Busse G., Frederichs B., Petrov N.Kh., Techert S. Structure determination of thiacyanine dye J-aggregates in thin films: Comparison between spectroscopy and wide angle X-ray scattering. // Phys. Chem. Chem. Phys. -2004.-V. 6.-P. 3309-3314.

151. Odinokov A.V., Bazilevskii M.V., Petrov N.Kh., Chibisov A.K., Alfimov M.V. Effect of counterions on photoprocesses of thiacarbocyanine in a binary solvent blend. // High Energy Chem. 2010. - V.44. - P. 376-382.

152. Yao H., Isohashi T., Kimura K. Electrolyte-induced mesoscopic aggregation of thiacarbocyanine dye in aqueous solution: Counterion size specificity. // J. Phys. Chem. (B). 2007. - V. 111. - P. 7176-7183.

153. Mason S.F. Helical polymerisation of Pseudo-isocyanine. // Proc. Chem. Soc.- 1964.-P. 119-120.

154. Dammeier B., Hoppe W. Die Kristall- und Molekülstruktur von N,N'-diäthyl-pseudoisocyaninchlorid. II Acta Crystallgr. Sect. B. 1971. - V. 27. -P. 2364-2370.

155. Daltrozzo E., Scheibe G., Gschwind K., Haimerl F. On the structure of the J-aggregates of pseudoisocyanine. // Photogr. Sei. Eng. 1974. - V. 18. -P. 441-450.

156. H. von Berlepsch, Böttcher C. Network superstructure of pseudoisocyanine J-aggregates in aqueous sodium chloride solution revealed by cryo-transmission electron microscopy. // J. Phys. Chem. (B). 2002. - V. 106. -P. 3146-3150.

157. Rehage H., Platz G., Struller B., Thunig C. Rheological properties of dye assemblies. // Tenside Surfactants Deterg. 1996. - V. 33. - P. 242-248.

158. Dekhtyar' M.L., Rozenbaum V.M. Davydov splitting in the electronic spectrum of polymethine dye aggregates. // Journal of Structural Chemistry. 1995.-V. 36.-P. 167-170.

159. Würthner F., Kaiser T.E., Saha-Möller C.R. J-aggregates: from serendipitous discovery to supramolecular engineering of functional dye materials. // Angew. Chem. Int. Ed. 2011. - V. 50. - P. 3376-3410.

160. H. von Berlepsch, Böttcher C., Ouart A., Burger C., Dähne S., Kirstein S. Supramolecular structures of J-aggregates of carbocyanine dyes in solution. II J. Phys. Chem. (B). 2000. - V. 104. - P. 5255-5262.

161. Didraga C., Pugzlys A., Hania P.R., H. von Berlepsch, Duppen K., Knoester J. Structure, spectroscopy, and microscopic model of tubular carbocyanine dye aggregates. // J. Phys. Chem. (B). 2004. - V. 108. -P. 14976-14985.

162. Lyon J.L., Eisele D.M., Kirstein S., Rabe J.P., Vanden Bout D.A., Stevenson K.J. Spectroelectrochemical investigation of double-walled tubular J-aggregates of amphiphilic cyanine dyes. // J. Phys. Chem. (C). -2008. V. 112. - P. 1260-1268.

163. Abdel-Mottaleb M.M.S., M. Van der Auweraer, Abdel-Mottaleb M.S.A. Photostability of J-aggregates adsorbed on TiÜ2 nanoparticles and AFM imaging of J-aggregates on a glass surface. // Intern. J. Photoen. 2004. -V. 6.-P. 29-33.

164. Nagata S., Kaga K., Karthaus O. Scanning nearfield optical spectral mapping of cyanine aggregates on mica. // J. of Surf Sei. and Nanotech. — 2005.-V. 3.-P. 94-96.

165. Yao H., Domoto К., Isohashi Т., Kimura К. In situ detection of birefringent mesoscopic H- and J-aggregates of thiacarbocyanine dye in solution. // Langmuir. 2005. - V. 21. - P. 1067-1073.

166. Левкоев И.И., Лифшиц Э.Б., Натансон C.B., Свешников Н.Н., Сытник З.П. О влиянии строения и некоторых физико-химических свойств полиметиновых красителей на их сенсибилизирующее действие. // Труды НИКФИ. 1991. - вып. 10 (20). - С. 55-67.

167. Hioki Т., Kato Т., Ikeda Т. Silver halide photographic emulsion and full color recording material containing the same. /7US Patent № 5296343. -1994.

168. Inagaki Y., Hioki Т., Katoh T. Molecular design of infrared sensitizing dyes: steric effects on the stability and on the aggregation behavior. // J. Soc. Photogr. Sci. Technnol. Jpn. ~ 1996. V. 59. - P. 260-265.

169. U. De Rossi, Moll J., Spieles M., Bach G., Dahne S. Control of the J-aggregation phenomenon by variation of the N-alkyl-substituents. // J. Prakt. Chem. 1995. - V. 337. - P. 203-208.

170. Натансон C.B., Лифшиц Э.Б. Об основных явлениях, обуславливающих спектральную сенсибилизацию галогенсеребряных эмульсий. // Усп. научн. фотографии. 1976. - Т. 17. - С. 23-42.

171. Лифшиц Э.Б., Шагалова Д.Я., Климзо Э.Ф. Основные направления изучения процесса спектральной сенсибилизации галогенсеребряных эмульсий. // Усп. научн. фотографии. 1984. - Т. 22. - С. 103-124.

172. Ballard R., Gardner В. The J- band of 1,1'- diethyl-9-methyl-4,5,4',5'-di benzthiacarbocyanine chloride. II J. Chem. Soc. (B). 1971. - P. 736-738.

173. Brooker L.G.S., White F.L., Heseltine D.W., Keyes G.H., Dent S.H., E J. van Lare. Spatial configuration, light absorption and sensitizing effects of cyanine dyes. // J. Photogr. Sci. 1953. - V. 1. - P. 173-183.

174. Yao H., Sugiyama S., Kawabata R., Ikeda H., Matsuoka O., Yamamoto S., Kitamura N. Spectroscopic and AFM studies on the structures of pseudoisocyanine J-aggregates at a mica/water interface. // J. Phys. Chem. (B). 1999. - V. 103. - P. 4452-4456.

175. Karthaus O., Kawatani Y. Self-assembly and aggregation control of cyanine dyes by adsorption onto mesoscopic mica flakes. // Jpn. J. Appl. Phys.2003.-V. 42.-P. 127-131.

176. Yao H., Ou Z., Morita Y., Kimura K. Dynamic morphology of mesoscopic pseudoisocyanine J-aggregates on mica induced by humidity treatments. // Colloid. Surf. (A). 2004. - V. 236. - P. 31-37.

177. Misawa K., Ono H., Minoshima K., Kobayashi T. New fabrication method for highly oriented J-aggregates dispersed in polymer films. // Appl. Phys. Lett. 1993. - V. 63. - P. 577-579.

178. Yao H., Kitamura S., Kimura K. Morphology transformation of mesoscopic supramolecular J-aggregates in solution. // Phys. Chem. Chem. Phys. — 2001.-V.3.-P. 4560-4565.

179. Yao H., Michaels C.A., Stranick S.J., Isohashi T., Kimura K. Collapse and self-reconstruction of mesoscopic architectures of supramolecular J-aggregates in solution: From strings to tubular rods. // Lett. Org. Chem. —2004.-V. l.-P. 280-287.

180. Yao H., Kagoshima Y., Kitamura S., Isohashi T., Ozawa Y., Kimura K. Superstructures of mesoscopic monomolecular sheets of thiacyanine J-aggregates in solution. // Langmuir. 2003. - V. 19. - P. 8882-8887.

181. Dietz F. Die Aggregation der Cyaninfarbstoffe und ihre Bedeutung fur die spektrale Sensibilisierung. // J. Signal AM. 1973. - Bd. 1. - S. 157-180, S. 237-252.

182. Sturmer D.M., Gaugh W.S. Spectral sensitization and calculated energy levels: Core/shell emulsions. // Photogr. Sci. Eng.-\975. -V.19. P.344-351.

183. James T.H. Energy levels of sensitizing dyes in relation to their photographic properties. // Photogr. Sci. Eng. 1972. - V. 16. - P. 120-125.

184. Nelson R.C. Ionization energies of dyes. // J. Opt. Soc. Am. 1965. - V. 55. -P. 897.

185. Nelson R.C. Energy transfers between sensitizer and substrate. IV. Energy levels in solid dyes. // J. Opt. Soc. Am. 1961. -V. 51. - P. 1186-1191.

186. Свиридов Д.В., Кулак А.И. Влияние агрегатного состояния на редокс-свойства цианиновых и пирилиевых красителей. // Журн. науч. и прикл. фото- и кинематографии. — 1987. — Т. 32. — С. 452-455.

187. Свиридов Д.В., Кулак А.И., Шапиро Б.И. Фотоэлектрохимическое окисление поли- и мономолекулярных форм карбоцианиновых красителей при их совместном присутствии на поверхности полупроводника. ПХимия выс. энергий. 1990. - Т. 24. - С. 151-155.

188. Cramp J.H.W., Terry G.C., Willets F.W. The flash photolysis of dyes adsorbed to emulsion grains. // J. Photogr. Sci. -1973. V. 21. - P. 101-106.

189. Чибисов A.K., Захарова Г.В., Шапиро Б.И. Промежуточные продукты при спектральной сенсибилизации галогенсеребряных фотографических эмульсий. //Журн. науч. и прикл. фотографии. -1993. Т. 38. - С. 59-68, С. 39-44; 1995.-Т. 40.-С. 9-13.

190. Emerson E.S., Conlin М.А., Rosenoff А.Е., Norland K.S., Rodriguez H., Chin D., Bird G.R. The geometrical structure and absorption spectrum of a cyanine dye aggregate. // J. Phys. Chem. 1967. - V. 71. - P. 2396-2403.

191. Bird G.R., Norland K.S., Rosenoff A.E., Michaud H.B. Spectra and structure of sensitizing dye aggregates. // Photogr. Sci. Eng. -1968. V. 12. -P. 196-206.

192. Dietz F., Kohler H.-J. Quantenchemische Untersuchungen an Farbstoffaggregaten I. Allvalenzelektronen-SCF-Berechnungen am Trimethincyanin und Doppelmolekiilmodellen. // J. Prakt. Chem. - 1971. -V. 313.-P. 1101-1109.

193. Dietz F., Passler K.J. Quantenchemische Untersuchungen an Farbstoffaggregaten V. // J. Signal AM. - 1973. - Bd. 1. - S. 57-63.

194. Tani Т., Kikuchi S. Calculation of the electronic energy levels of various photographic sensitizing and desensitizing dyes of emulsions. // Photogr. Sci. Eng. 1967. - V. 11. - P. 129-144.

195. Era M., Adachi C., Tsutsui Т., Saito S. Double-heterostructure electroluminescent device with cyanine-dye bimolecular layer as an emitter. // Chem. Phys. Lett. 1991. - V. 178. - P. 488-490.

196. Bourbon S., Gao M., Kirstein S. Electroluminescence of self-assembled films of poly (p-phenylene vinylene) and j-aggregates. // Synth. Met. 1999. -V. 101.-P. 152-153.

197. Tameev A.R., Kozlov A.A., Mal'tsev E.I., Lypenko D.A., Bobinkin V.V., Vannikov A.V. Charge carrier transport in aromatic polyimides and polyimide/J-aggregate composites. // SP/E Proc.-2001.-V.4105.-P.443-449.

198. Перелыгина O.M. Диссертация по специальности физическая химия: Электролюминесценция композитов на основе полианилина и наноразмерных органических молекулярных кристаллов. ИФХЭ РАН, 2009.- 121 с.

199. Shimano J.Y., MacDiarmid A. Polyaniline, a dynamic block copolymer: key to attaining its intrinsic conductivity? // Synthetic Metals. 2001. - V. 123. -P. 251-262.

200. Chen S.-A., Chuang K., Chao C., Lee H. White-light emission from electroluminescence diode with polyaniline as the emitting layer. // Synthetic Metals. 1996. - V. 82. - P. 207-210.

201. Vorotyntsev M.A., Casalta M., Pousson E., Roullier L., Boni G., Moise C. Redox properties of titanocene-pyrrole derivative and its electro-polymerization. // Electrochimica Acta. 2001. - V. 46. - P. 4017—4033.

202. Миронов В.JI. Основы сканирующей зондовой микроскопии, учебное пособие. — Нижний Новгород, 2004. 110 с.

203. Klinov D., Magonov S. True molecular resolution in tapping-mode atomic force microscopy with high-resolution probes. // Appl. Phys. Lett. 2004. -V. 84. - P. 2697-2699.

204. Workman R.K., Manne S. Patterned thin water films on mica. // Langmuir. 2002. - V. 18. - P. 661-667.

205. Moreno-Herrero F., Colchero J., Baró A. DNA height in scanning force microscopy. // Ultramicroscopy. 2003. - V. 96. - P. 167-174.

206. García R., Pérez R. Dynamic atomic force microscopy methods. // Surface Science Reports. 2002. - V. 47. - P. 197-301.

207. Фролов Ю.Г. Курс коллоидной химии. Поверхностные явления и дисперсные системы. — Москва, Химия, 2-изд, 1989. — 465 с.

208. Prokhorov V.V., Saunin S.A. Probe-surface interaction mapping in amplitude modulation atomic force microscopy by integrating amplitudedistance and amplitude-frequency curves. // Appl. Phys. Lett. -2007. V. 91. - P. 023122-023124.

209. Прохоров B.B., Мальцев Е.И., Перелыгина O.M., Лыпенко Д.А., Позин С.И., Ванников А.В. Прецизионное измерение наноразмерных высот J-агрегатов с помощью атомно-силовой микроскопии. // Российские нанотехнологии. 2011. — Т. 6. — № 5-6. — С. 52-59.

210. Yao Н. Morphology transformations in solutions: Dynamic supramolecular aggregates. // Annual Reports on the Progress of Chemistry, Sect. C. -2004. -V. 100.-P. 99-148.

211. Прохоров B.B., Позин С.И., Перелыгина O.M., Лыпенко Д.А., Мальцев Е.И. Симметрия монослойных структур J-агрегатов моно-метинового красителя. // Материаловедение. 2012. - №. 2. - С. 38-42.

212. Chuev G.N., Fedorov M.V. Reference interaction site model study of self-aggregating cyanine dyes. // J. of Chem. Phys. 2009. - V. 131. -P. 074503.

213. Prokhorov V.V., Pozin S., Lypenko D., Perelygina O., Mal'tsev E.I., Vannikov A.V. Molecular arrangements in polymorphous monolayer structures of carbocyanine dye J-aggregates. // Chem. Phys. Lett. 2012. -V. 535 -P. 94-99.

214. M. van der Auweraer, Scheblykin I. One-dimensional J-aggregates: dependence of the properties of the exciton band on the model of the intermolecular coupling. // Chemical Physics. 2002. - V. 275. - P. 285-306.

215. Bakalis L.D., Rubtsov I., Knoester J. Absorption spectra of mixed two-dimensional cyanine aggregates on silver halide substrates. // Journal of Chemical Physics. 2002. - V. 117. - P. 5393-5403.

216. Чибисов A.K., Славнова Т.Д., Тернер X. Самосборка молекул полиметиновых красителей в растворах. Кинетический аспект агрегации. // Российские нанотехнологии. — 2008. — Т. 3. — № 1-2. — С. 26-41.

217. Тихонов А.С., Штыкова А.А., Лебедев-Степанов П.В., Петров А.Н., Алфимов М.В. Неравновесная кристаллизация тиакарбоцианинового красителя в тонких пленках раствора. // Российские нанотехнологии. -2007. Т. 2. - № 9-10. - С. 40-48.

218. Шапиро Б.И., Белоножкина Е.А., Кузьмин В.А. Цис-, транс-агрегаты тиатриметинцианиновых красителей. // Российские нанотехнологии. — 2009. Т. 4. - № 1-2. - С. 92-98.

219. Nekrasov A.A., Ivanov V.F., Vannikov A.V. Analysis of the structure of polyaniline absorption spectra based on spectroelectrochemical data. // J. of Electroanal. Chem. 2000. - V. 482. - P. 11- 17.

220. Sergio Trasatti. The absolute electrode potential: an explanatory note. // Pure & Appl. Chem. 1986. - V. 58. - P. 955-966.

221. Sun L., Liu H., Clark R., Yang S.C. Double-strand polyaniline. // Synth. Met- 1997. V. 84. - P. 67-68

222. Kwon O., McKee M.L. Calculations of band gaps in polyaniline from theoretical studies of oligomers. // J. Phys. Chem. B. 2000. - V. 104. -P. 1686-1694.

223. Tameev A.R., Vannikov A.V., Schoo H.F.M. Charge mobylity and photovoltaic behavior of carbocyanine dye layers deposited by thermal evaporation in vacuum. // Thin Solid Films.-2004. V.451-452. - P.109-111.

224. Qian L., Bera D., Holloway P.H. Electrophosphorescence from triplet excimers in poly-(JV-vinylcarbazole). // Appl. Phys. Lett. 2007. - V. 90. -103511.

225. Chen C.F., Su Q., Chen Y., Xi F. Fluorescence spectra of the Poly-(N-vinylcarbazole) obtained with asymmetric polymerization. // Chinese Chemical Letters. 1999. - V. 10. - P. 59-62.

Обратите внимание, представленные выше научные тексты размещены для ознакомления и получены посредством распознавания оригинальных текстов диссертаций (OCR). В связи с чем, в них могут содержаться ошибки, связанные с несовершенством алгоритмов распознавания. В PDF файлах диссертаций и авторефератов, которые мы доставляем, подобных ошибок нет.